Thank You!
Search OCA:
Get Local!

Find Local News, Events & Green Businesses on OCA's State Pages:

OCA News Sections

Organic Consumers Association

Rachel's #990: How to Fix Global Warming

  • Rachel's Democracy & Health News #990
    "Environment, health, jobs and justice--Who gets to decide?"
    Environmental Research Foundation, December 18, 2008
    Straight to the Source

Featured stories in this issue...

How To Fix Global Warming and Gain Energy Security
A detailed new study from the Atmosphere/Energy Program at Stanford
University examines 10 electric power sources and two liquid fuel
options, comparing them by 11 different criteria. The study concludes
that ethanol, nuclear, and coal-with-carbon-storage (CCS) are dirty,
inefficient, and wasteful compared to wind, direct sunlight,
geothermal and ocean energy. These cleaner, inexhaustible sources
could eliminate global warming gases, give us energy security and
meet the nation's (and the world's) energy needs forever, the study
concludes.

Berry and McKibben Call for Civil Disobedience To Stop Coal: March 2
"There are moments in a nation's -- and a planet's -- history when
it may be necessary for some to break the law in order to bear witness
to an evil, bring it to wider attention, and push for its correction."
-- Wendell Berry and Bill McKibben

When Will the Oil Run Out?
In an interview, Fatih Birol, the chief economist of the
International Energy Agency (IEA), says he expects world oil supply to
peak in 2020, which would give the world just 11 years to prepare for
steadily-rising oil prices.

The Failure of Carbon Cap-and-Trade in European
The European Union started with a high-minded ecological goal:
encouraging companies to cut their greenhouse gases by making them pay
for each ton of carbon dioxide they emitted into the atmosphere.....
Four years later, it is becoming clear that system has so far produced
little noticeable benefit to the climate -- but generated a
multibillion-dollar windfall for some of the Continent's biggest
polluters.

New Cases of Cancer Decline in the U.S.
On the other hand, "Some types of cancer are being found more
often, the report said. Among men, incidence rates increased for
cancers of the liver, kidney and esophagus, and for melanoma and
myeloma. Among women, incidence rates increased for cancers of the
lung, thyroid, pancreas, brain and nervous system, bladder and kidney,
and for melanoma. Rates of leukemia and non-Hodgkin's lymphoma
increased in both sexes."

Child Leukemia Death Rates Rising Near U.S. Nuclear Plants
A new study finds that the death rate from leukemia has risen
during the past 2 decades among children living near nuclear power
plants in the U.S. Similar findings have been reported previously
from Europe.
Diabetes Epidemic Signals An Increase in Blindness, Too
A new report projects that the number of adults 40 and older with
diabetic retinopathy -- the leading cause of blindness among working-
age adults -- will reach 16 million in 2050, up from 5.5 million in
2005.


::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
From: Rachel's Democracy & Health News #990 ..........[This story printer-friendly]
December 18, 2008

HOW TO FIX GLOBAL WARMING AND GAIN ENERGY SECURITY

[Rachel's introduction: A detailed new study from the Atmosphere/ Energy Program at Stanford University examines 10 electric power sources and two liquid fuel options, comparing them by 11 different criteria. The study concludes that ethanol, nuclear, and coal-with- carbon-storage (CCS) are dirty, inefficient, and wasteful compared to wind, direct sunlight, geothermal and ocean energy. These cleaner, inexhaustible sources could eliminate global warming gases, give us energy security and meet the nation's (and the world's) energy needs forever, the study concludes.]

By Peter Montague

A detailed new report from Stanford University reviews and ranks major energy-related solutions to global warming, air pollution deaths, and energy security. The report is available now online with extensive supplementary materials, and will soon appear in the journal Energy & Environmental Solutions. The author is Mark Z. Jacobson, director of the Atmosphere/Energy Program at Stanford in Palo Alto, Calif.

[Read Stanford's press release announcing the study or this news story from R&D Magazine, or watch a video of Mark Jacobson discussing his new study.]

The report assumes that all U.S. gasoline-powered vehicles will shift entirely to electric power or ethanol fuel, and it then compares 10 ways of generating the necessary electricity and two ways of making ethanol fuel (basically, from corn or cellulose). Each of these 12 options is then evaluated against 11 different criteria and a final ranking is calculated.

The power-source technologies considered are:

(1) Solar photovoltaics -- the dark blue glassy panels that convert sunlight directly into electricity;

(2) Concentrated solar power -- arrays of mirrors (or lenses) that focus sunlight to heat a fluid to high temperature in a collector (such as a pipe), generating steam to turn a turbine to make electricity;

(3) Wind turbines, each up to 5 megawatts in size, with blades 160 meters (525 feet) long, which turn a turbine to make electricity. storing the electricity in batteries;

(4) Wind turbines making electricity (see paragraph above) but storing the energy as hydrogen;

(5) Geothermal -- extracting some of the heat that lies deep below the surface everywhere on earth;

(6) Hydro dams -- like Hoover dam -- a well-known technology that currently provides 17.5% of the world's electricity, more than any other single technology;

(7) Ocean wave energy -- machines that move with the waves (for example, a bobbing buoy) to generate electricity;

(8) Tidal energy -- machines that extract energy from flowing tidal waters and convert it to electricity;

(9) Nuclear power plants that split (fission) atoms of enriched uranium, or plutonium, to generate heat to boil water to turn a turbine to make electricity;

(10) Coal-fired power plants that burn pulverized coal, which could be fitted with end-of-pipe filters to capture carbon dioxide gas, compress it into a liquid, pipe it to a "suitable location" and bury it a mile or so underground, hoping it will stay there forever.

(11) Ethanol (alcohol) made from corn (or from sugarcane, wheat, sugar beets or molasses);

(12) Ethanol made from cellulose (switch grass; wood waste; wheat or corn stalks; other stalks; or miscanthus grasses).

The report evaluates each of these 12 sources of energy by 11 different criteria, as follows:

(1) Abundance of the resource; each of these resources is available in vast quantities but some are far more abundant than others. Solar photovoltaics lead the pack by far -- converting just 1% of available sunlight to electricity could supply more than the world's total power needs (not just the world's electricity needs). Wind power is abundant, too: available wind power is five time as large as the world's total energy needs and 20 times as large as the world's electricity needs.

(2) Climate-relevant emissions (carbon dioxide, plus other greenhouse gases, such as methane, converted to their carbon-dioxide equivalent based on their global-warming potential). This is expressed as grams of CO2-equivalent emitted per kiloWatt-hour of electricity (or electricity equivalent, in the case of ethanol) for each of the 12 technologies. This calculation takes into consideration direct and indirect emissions throughout the life cycle of a machine (whether a wind turbine or a nuclear power plant).

The study factors in "opportunity cost emissions" -- emissions that will occur from existing dirty sources of power during the delay period while new machines are being brought online. For example, a wind farm can be brought online in 2-5 years but a nuclear power plant requires 10 to 19 years and a coal-with-CCS plant requires 6 to 11 years. Thus a wind farm can displace existing CO2 and air pollution emissions much faster than either nuclear or coal-with-CCS, raising the "opportunity costs" of nuclear and coal plants because of inherent delays in construction.

The results in this section are startling. For example, coal-with- carbon-capture emits 60 times as much CO2 as wind energy for each kiloWatt-hour of electricity generated,

(3) Human deaths from air pollution are calculated for each of the 12 technologies; here corn and cellulosic ethanol fare worst, with coal- with-CCS and nuclear second-worst. Wind-power is best by far. This report breaks new ground, tackling some of the difficult questions surrounding proliferation of nuclear power plants, which unavoidably increase the odds that some time in the next 30 years a rogue nuclear weapon will be detonated with great loss of life.

(4) The "footprint" of each technology -- the area of land and/or ocean required. Here the ethanols fare far worse than all the others.

(5) Spacing -- This is the area required by the "footprint" (see preceding paragraph) plus the spacing needed between installations of wind, tidal, wave and nuclear plants (which require security buffers).

(6) Water use; again the ethanols are far worse than any of the alternatives;

(7) Effects on wildlife and the natural environment are considered separately for each of the 12 technologies. Here we can only hit the highlights of this long section of the report. For example, this section explicitly addresses the concern that wind turbines kill large numbers of bats and birds each year. The report concludes that, in the worst case, if 1.4 to 2.3 million 5-megawatt wind turbines were installed worldwide to eliminate all human-created CO2 emissions, total global bird kill would be 1.4 to 14 million birds per year. This large number represents less than 1% of birds killed each year by humans including by communication towers and their guy wires (which birds smash into at night, attracted by lights), window panes, and pet cats or former-pet feral cats. Although killing 1.4 to 14 million birds per year is not trivial, it can be weighed against eliminating enough air pollution to save an estimated 2.4 million human lives each year and a large (though not well-quantified) reduction in harm to wildlife by eliminating toxic air and water pollution. Wild animals, including birds, are harmed by pollution just as humans are.

(8) Thermal pollution -- heat released from machines locally -- particularly nuclear and coal plants -- often as hot water from cooling towers;

(9) Releases of toxic chemicals and radioactive materials; again, wildlife and humans would both benefit very substantially if we replaced existing fossil-fueled technologies and nuclear technologies with cleaner alternatives.

(10) Energy supply disruption. It is important to evaluate the potential of each technology to be disrupted by terrorism, war, or natural disaster. Here the dispersed technologies (wind, solar photovoltaics, wave and tidal) fare best and the most centralized (nuclear, coal-with-CCS, and concentrated solar) fare worst.

(11) Intermittency. This is an important consideration because we need power 24/7 but the sun does not shine at night and the wind sometimes dies down at any given locale.

The issue of intermittency is crucial to the success of power systems dependent on wind and sun, and the report treats it as an engineering problem that can be solved. The report says, "Whether or not intermittency affects the power supply depends on whether effort[s] to reduce intermittency are made." The report then describes 5 ways to reduce intermittency:

(a) Interconnecting geographically-dispersed naturally-intermittent energy sources (e.g., wind, solar, wave, tidal). The author of this report, Mark Z. Jacobson, published an earlier detailed study of the reliability benefits that could be gained by modernizing the transmission grid to interconnect dispersed energy sources;

(b) Use a reliable energy source, such as hydro dams, or geothermal power plants, to smooth out supply or to match demand;

(c) Use smart meters to provide maximum electric power to charging vehicle batteries when power generation is high, reducing the power to charging vehicle batteries at other times, thus smoothing out demand to match supply;

(d) Store electric power for later use; electricity can be stored as hydrogen, or in the batteries of all the electric vehicles plugged into the grid at any moment; or as pumped hydroelectric storage (water pumped uphill at night runs back down during the day, generating power); or as compressed air in underground vaults or turbine nacelles; or in flywheels; or in molten salts (as is being done with some concentrated solar plants today). The disadvantage of stored power is conversion losses in both directions rather than just one.

(e) Forecast short-term weather to plan better for energy needs; in many locales, with a good database of measurements, weather can be forecast one to four days in advance with good accuracy, helping grid managers anticipate both demand and supply.

The 12 energy sources are rated on the 11 criteria and then a weighting factor is applied. The weighting factor indicates the importance of the criterion -- global warming and air pollution deaths are given a weight of 22, while thermal pollution has a weight of 1. The weighting factors themselves sum to 100. Then a total rank is calculated (1 is best, 12 is worst) assuming that all vehicles in the U.S. are converted to electricity and powered by the particular technology being ranked.

The Results: Hand Me the Envelope, Please

Wind-powered battery-electric vehicles are ranked #1, best by far with a weighted average of only 2.09. Second is wind-powered hydrogen- storage vehicles (weighted average, 3.22); third is concentrated solar-powered battery-electric vehicles (weighted average, 4.28); fourth place goes to geothermal-powered battery-electric vehicles (weighted average, 4.60); fifth is tidal-powered battery-electric vehicles (weighted average, 4.97); sixth is photo-voltaic-powered battery-electric vehicles (weighted average, 5.26); seventh is wave- powered battery- electric vehicles (weighted average, 6.11); eighth place goes to hydro- dam-powered battery-electric vehicles (weighted average, 8.40); ninth place goes to two technologies that are tied with equal scores -- nuclear powered battery-electric vehicles (weighted average, 8.50) and coal-with-CCS-powered battery-electric vehicles (weighted average, 8.47); 11th place goes to vehicles powered by corn-based E-85 fuels (weighted average, 10.6) and 12th place goes to vehicles burning cellulose-derived E85 fuel (weighted average, 10.7).

According to the report, both methods of producing ethanol make the global warming problem worse, not better. Given that the U.S. Congress has bet the farm on ethanol (so to speak), this finding does not inspire confidence that Congress will make rational choices based on the kind of data found in this report. Where is the Congressional Office of Technology Assessment when you need it? (Gone the way of the Dodo bird in 1995, during the reign of Newt Gingrich.)

To get all this into perspective, the report points out that we could power all our light-duty and heavy-duty gasoline-powered vehicles with wind -- by converting them to electricity and supplying their power by deploying 73,000 to 144,000 5-megawatt wind turbines. Is this doable? Of course it is. During the four years of World War II, the U.S. built more than 300,000 airplanes. Deploying half that number of wind turbines is definitely doable. Is it affordable? The Stanford report does not address questions of dollar cost. But we can do a crude calculation: given that the U.S. economy generates roughly $14 trillion each year, even if we were to spend $2 trillion on renewable energy during the next 15 years, it would represent less that 1% of gross domestic product (GDP) during the period.

Deploying 144,000 wind turbines would reduce our global warming emissions by 33% and would eliminate about 15,000 deaths from air pollution each year in the U.S.

Carrying the argument further, the report points out that the U.S. could eliminate 100% of its global-warming emissions by powering the economy with 389,000 to 645,000 5-megawatt wind turbines. Going even further, the report points out that worldwide emissions of fossil- fuel carbon could be eliminated entirely by powering the world economy with 2.2 to 3.6 million 5-megawatt wind turbines. No one expects the world to rely exclusively on wind-power, but the calculation reveals just how large and clean the wind resource really is.

Some limitations of the study

By design, this study does not take into account energy savings that are readily available through improved efficiencies -- it only discusses efficiencies inherent in shifting from gasoline-powered internal combustion vehicles (with a tank to wheel efficiency of 17%) to battery-electric vehicles with a plug-to-wheels efficiency of 86%). It omits discussion of the many efficiencies that are readily available at reasonable cost in the built environment, including better insulation, less energy-intensive materials, combined heat-and- power installations, and so on.

The study will be criticized (unfairly, it seems to me) for assuming that we will meet the ever-expanding power demands of ever-growing economies, rather than looking for ways to shrink demand. The purpose of the study was to evaluate energy-supply alternatives, which it has done remarkably well.

The study does not take into account the large number of human deaths caused each year by burning coal and oil -- including not only fine and ultrafine particles released from smoke stacks, exhaust pipes, and chimneys (from coal plants, diesel vehicles and oil-fired home furnaces) but also the 120 million tons of coal combustion waste produced each year in the U.S., most of which gets buried in the ground somewhere, often contaminating ground water with various toxic metals and organic compounds (polycyclic aromatic hydrocarbons, dioxins, furans, and so on).

Despite these limitations, this is an exceedingly important study that breaks new analytic ground and provides clear guidance for policy makers. Unlike some previous energy studies from Stanford and Princeton, which promoted coal-with-carbon storage and were funded by the oil, coal and automobile industries, the present study was not supported by any interest group, company, or government agency.

We can only hope that members of Congress -- and Mr. Obama's choice for Secretary of Energy, Steven Chu -- are sufficiently on the ball to read this new report carefully, consider the options it evaluates, and then act upon it in time to avert catastrophe.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

From: Email from Wendell Berry and Bill McKibben .........[This story printer-friendly]
December 15, 2008

BERRY AND MCKIBBEN CALL FOR CIVIL DISOBEDIENCE TO STOP COAL: MAR. 2

[Rachel's introduction: "There are moments in a nation's -- and a planet's -- history when it may be necessary for some to break the law in order to bear witness to an evil, bring it to wider attention, and push for its correction." -- Wendell Berry and Bill McKibben]

By Wendell Berry and Bill McKibben

Dear Friends,

There are moments in a nation's -- and a planet's -- history when it may be necessary for some to break the law in order to bear witness to an evil, bring it to wider attention, and push for its correction.

We think such a time has arrived, and we are writing to say that we hope some of you will join us in Washington D.C. on Monday March 2 in order to take part in a civil act of civil disobedience outside a coal-fired power plant near Capitol Hill.

We will be there to make several points:

** Coal-fired power is driving climate change. Our foremost climatologist, NASA's James Hansen, has demonstrated that our only hope of getting our atmosphere back to a safe level -- below 350 parts per million CO2 -- lies in stopping the use of coal to generate electricity.

** Even if climate change were not the urgent crisis that it is, we would still be burning our fossil fuels too fast, wasting too much energy and releasing too much poison into the air and water. We would still need to slow down, and to restore thrift to its old place as an economic virtue.

** Coal is filthy at its source. Much of the coal used in this country comes from West Virginia and Kentucky, where companies engage in "mountaintop removal" to get at the stuff; they leave behind a leveled wasteland, and impoverished human communities. No technology better exemplifies the out-of-control relationship between humans and the rest of creation.

** Coal smoke makes children sick. Asthma rates in urban areas near coal-fired power plants are high. Air pollution from burning coal is harmful to the health of grown-ups too, and to the health of everything that breathes, including forests.

The industry claim that there is something called "clean coal" is, put simply, a lie. But it's a lie told with tens of millions of dollars, which we do not have. We have our bodies, and we are willing to use them to make our point.

We don't come to such a step lightly. We have written and testified and organized politically to make this point for many years, and while in recent months there has been real progress against new coal-fired power plants, the daily business of providing half our electricity from coal continues unabated. It's time to make clear that we can't safely run this planet on coal at all. So we feel the time has come to do more -- we hear President Barack Obama's call for a movement for change that continues past election day, and we hear Nobel Laureate Al Gore's call for creative non-violence outside coal plants. As part of the international negotiations now underway on global warming, our nation will be asking China, India, and others to limit their use of coal in the future to help save the planet's atmosphere. This is a hard thing to ask, because it's their cheapest fuel. Part of our witness in March will be to say that we're willing to make some sacrifices ourselves, even if it's only a trip to the jail.

With any luck, this will be the largest such protest yet, large enough that it may provide a real spark. If you want to participate with us, you need to go through a short course of non- violence training. This will be, to the extent it depends on us, an entirely peaceful demonstration, carried out in a spirit of hope and not rancor. We will be there in our dress clothes, and ask the same of you. There will be young people, people from faith communities, people from the coal fields of Appalachia, and from the neighborhoods in Washington that get to breathe the smoke from the plant.

We will cross the legal boundary of the power plant, and we expect to be arrested. After that we have no certainty what will happen, but lawyers and such will be on hand. Our goal is not to shut the plant down for the day -- it is but one of many, and anyway its operation for a day is not the point. The worldwide daily reliance on coal is the danger; this is one small step to raise awareness of that ruinous habit and hence help to break it.

Needless to say, we're not handling the logistics of this day. All the credit goes to a variety of groups, especially the Energy Action Coalition (which is bringing thousands of young people to Washington that weekend), Greenpeace, the Ruckus Society, and the Rainforest Action Network. A website at that latter organization is serving as a temporary organizing hub.

If you go there, you will find a place to leave your name so that we'll know you want to join us.

Thank you,

Wendell Berry, Bill McKibben

P.S. This is important: Please forward this letter to anyone and everyone you think might be interested.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

From: Guardian (Manchester, U.K.) ........................[This story printer-friendly]
December 15, 2008

WHEN WILL THE OIL RUN OUT?

[Rachel's introduction: In an interview, Fatih Birol, the chief economist of the International Energy Agency (IEA), says he expects world oil supply to peak in 2020, which would give the world just 11 years to prepare for steadily-rising oil prices.]

By George Monbiot

[In this video, George Monbiot meets Fatih Birol, chief economist of the International Energy Agency.]

Can you think of a major threat for which the British government does not prepare? It employs an army of civil servants, spooks and consultants to assess the chances of terrorist attacks, financial collapse, floods, epidemics, even asteroid strikes, and to work out what it should do if they happen. But there is one hazard about which it appears intensely relaxed: it has never conducted its own assessment of the state of global oil supplies and the possibility that one day they might peak and then go into decline.

If you ask, the government always produces the same response: "Global oil resources are adequate for the foreseeable future." It knows this, it says, because of the assessments made by the International Energy Agency (IEA) in its World Energy Outlook reports. In the 2007 report, the IEA does appear to support the government's view. "World oil resources," it states, "are judged to be sufficient to meet the projected growth in demand to 2030," though it says nothing about what happens at that point, or whether they will continue to be sufficient after 2030. But this, as far as Whitehall is concerned, is the end of the matter. Like most of the rich world's governments, the UK treats the IEA's projections as gospel. Earlier this year, I submitted a freedom of information request to the UK's department for business, asking what contingency plans the government has made for global supplies of oil peaking by 2020. The answer was as follows: "The government does not feel the need to hold contingency plans specifically for the eventuality of crude-oil supplies peaking between now and 2020."

So the IEA had better be right. In the report on peak oil commissioned by the US department of energy, the oil analyst Robert L Hirsch concluded that "without timely mitigation, the economic, social and political costs" of world oil supplies peaking "will be unprecedented". He went on to explain what "timely mitigation" meant. Even a worldwide emergency response "10 years before world oil peaking", he wrote, would leave "a liquid-fuels shortfall roughly a decade after the time that oil would have peaked". To avoid global economic collapse, we need to begin "a mitigation crash programme 20 years before peaking". If Hirsch is right, and if oil supplies peak before 2028, we're in deep doodah.

So burn this into your mind: between 2007 and 2008 the IEA radically changed its assessment. Until this year's report, the agency mocked people who said that oil supplies might peak. In the foreword to a book it published in 2005, its executive director, Claude Mandil, dismissed those who warned of this event as "doomsayers". "The IEA has long maintained that none of this is a cause for concern," he wrote. "Hydrocarbon resources around the world are abundant and will easily fuel the world through its transition to a sustainable energy future." In its 2007 World Energy Outlook, the IEA predicted a rate of decline in output from the world's existing oilfields of 3.7% a year. This, it said, presented a short-term challenge, with the possibility of a temporary supply crunch in 2015, but with sufficient investment any shortfall could be covered. But the new report, published last month, carried a very different message: a projected rate of decline of 6.7%, which means a much greater gap to fill.

More importantly, in the 2008 report the IEA suggests for the first time that world petroleum supplies might hit the buffers. "Although global oil production in total is not expected to peak before 2030, production of conventional oil... is projected to level off towards the end of the projection period." These bland words reveal a major shift. Never before has one of the IEA's energy outlooks forecast the peaking or plateauing of the world's conventional oil production (which is what we mean when we talk about peak oil).

But that is as specific as the report gets. Does it or doesn't it mean that we have time to prepare? What does "towards the end of the projection period" mean? The agency has never produced a more precise forecast -- until now. For the first time, in the interview I conducted with its chief economist Fatih Birol recently, it has given us a date. And it should scare the pants off anyone who understands the implications.

Birol, the lead author of the new energy outlook, is a small, shrewd, unflustered man with thick grey hair and Alistair Darling eyebrows. He explained to me that the agency's new projections were based on a major study it had undertaken into decline rates in the world's 800 largest oilfields. So what were its previous figures based on? "It was mainly an assumption, a global assumption about the world's oil fields. This year, we looked at it country by country, field by field and we looked at it also onshore and offshore. It was very, very detailed. Last year it was an assumption, and this year it's a finding of our study." I told him that it seemed extraordinary to me that the IEA hadn't done this work before, but had based its assessment on educated guesswork. "In fact nobody had done this research," he told me. "This is the first publicly available data."

So was it not irresponsible to publish a decline rate of 3.7% in 2007, when there was no proper research supporting it? "No, our previous decline assumptions have always mentioned that these are assumptions to the best of our knowledge -- and we also said that the declines [could be] higher than what we have assumed."

Then I asked him a question for which I didn't expect a straight answer: could he give me a precise date by which he expects conventional oil supplies to stop growing?

"In terms of non-Opec [countries outside the big oil producers' cartel]," he replied, "we are expecting that in three, four years' time the production of conventional oil will come to a plateau, and start to decline. In terms of the global picture, assuming that Opec will invest in a timely manner, global conventional oil can still continue, but we still expect that it will come around 2020 to a plateau as well, which is, of course, not good news from a global-oil- supply point of view."

Around 2020. That casts the issue in quite a different light. Birol's date, if correct, gives us about 11 years to prepare. If the Hirsch report is right, we have already missed the boat. Birol says we need a "global energy revolution" to avoid an oil crunch, including (disastrously for the environment) a massive global drive to exploit unconventional oils, such as the Canadian tar sands. But nothing on this scale has yet happened, and Hirsch suggests that even if it began today, the necessary investments and infrastructure changes could not be made in time. Birol told me: "I think time is not on our side here."

When I pressed him on the shift in the agency's position, he argued that the IEA has been saying something like this all along. "We said in the past that one day we will run out of oil. We never said that we will have hundreds of years of oil... but what we have said is that this year, compared with past years, we have seen that the decline rates are significantly higher than what we have seen before. But our line that we are on an unsustainable energy path has not changed."

This, of course, is face-saving nonsense. There is a vast difference between a decline rate of 3.7% and 6.7%. There is an even bigger difference between suggesting that the world is following an unsustainable energy path -- a statement almost everyone can subscribe to -- and revealing that conventional oil supplies are likely to plateau around 2020. If this is what the IEA meant in the past, it wasn't expressing itself very clearly.

So what do we do? We could take to the hills, or we could hope and pray that Hirsch is wrong about the 20-year lead time, and begin a global crash programme today of fuel efficiency and electrification. In either case, the British government had better start drawing up some contingency plans.

monbiot.com

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

From: New York Times .....................................[This story printer-friendly]
December 10, 2008

MONEY AND LOBBYISTS HURT EUROPEAN EFFORTS TO CURB GASES

[Rachel's introduction: The European Union started with a high-minded ecological goal: encouraging companies to cut their greenhouse gases by making them pay for each ton of carbon dioxide they emitted into the atmosphere..... Four years later, it is becoming clear that system has so far produced little noticeable benefit to the climate -- but generated a multibillion-dollar windfall for some of the Continent's biggest polluters.]

By James Kanter and Jad Mouawad

Brussels -- The European Union started with a high-minded ecological goal: encouraging companies to cut their greenhouse gases by making them pay for each ton of carbon dioxide they emitted into the atmosphere.

But that plan unleashed a lobbying free-for-all that led politicians to dole out favors to various industries, undermining the environmental goals. Four years later, it is becoming clear that system has so far produced little noticeable benefit to the climate -- but generated a multibillion-dollar windfall for some of the Continent's biggest polluters.

As President-elect Barack Obama considers how to curb the gases that contribute to global warming, Europe's struggle with the problem illustrates the momentous task ahead for the United States.

European politicians, who acknowledge that their system got off to a rocky start, contend that after an initial experimental phase that lasted from 2005 to 2007, the system has improved. But some outside analysts doubt Europe can achieve its lofty goals.

The original European plan called for issuing a restricted number of permits to emit carbon dioxide, the main gas that contributes to global warming, then creating a market in which they could be freely traded. If a company produced more gas than its permits allowed, it would be penalized by having to buy more; if it managed to reduce emissions by switching to cleaner fuels or technologies, it would be able to sell its permits to polluting companies. The marketplace would set the price.

In the United States, a similar market approach is credited with reducing acid rain, another environmental problem. The system encourages efficiency and innovation by rewarding companies that can cut the most pollution at the lowest cost.

But global warming is a far larger, more complicated problem than acid rain, and setting up a workable market in Europe has proved to be difficult and contentious. As the incoming Obama administration contemplates creation of an American market, Washington has already seen the beginnings of the same lobbying frenzy that bedeviled Europe.

Beseeched by giant utilities and smokestack industries that feared for their competitiveness, the European Union scrapped the idea of forcing industries to buy their permits, with the money going to public coffers. Instead, governments gave out the vast majority of the permits for nothing, in such quantity that the market nearly collapsed. The basic question of whether to sell permits, give them away or do some of both has yet to be resolved in the United States.

"Everybody will fight their own corner," said Nicholas Stern, a British economist, who recommended that the United States charge for a substantial number of permits rather than dole them all out as the Europeans have. "That's why it's so important to have a clear conception from the start, to start off with a clear strategy."

After the initial crash, Europe tightened its system and issued new permits, and they have acquired substantial value. Nearly $80 billion will change hands in 2008 on the European emissions market, making it by far the world's largest, according to estimates by Andreas Arvanitakis, an analyst at Point Carbon, a research firm.

Much of the cost of the European system is being paid by the public in the price of goods and services, including higher electricity bills, but whether the money is doing any good is an open question. The amount of carbon dioxide emitted by plants and factories participating in the system has not fallen. Their emissions rose 0.4 percent in 2006 and another 0.7 percent in 2007.

Meanwhile, a series of disputes has erupted about the way companies are carrying out the system.

A German Example

The case of Germany, Europe's largest economy, illustrates the many problems in Europe's approach. For instance, RWE, a major German power company and Europe's largest carbon emitter, received a windfall of about $6.4 billion in the first three years of the system, according to analyst estimates. Regulators in that country have accused utilities of charging customers for far more permits than was allowable.

This week, leaders of the European Union are meeting in Brussels to shape the next phase of their system, and find ways to cut greenhouse gas emissions by 20 percent by 2020. They also seek to close loopholes worth billions to various industries, while confronting the same tug of war between long-term environmental goals and short-term costs that proved so vexing the first time around.

The European summit meeting coincides with a round of negotiations among 190 nations to establish a new global treaty limiting greenhouse emissions, a treaty the Obama administration might seek to join.

Pressure From Lobbyists

During long negotiations on the landmark Kyoto climate treaty more than a decade ago, the Clinton administration pushed to include emissions trading as a means of achieving the goals, favoring that approach over energy taxes or traditional regulatory limits on emissions.

Even after the Americans backed out of ratifying Kyoto, Europe decided to set up the world's first large, mandatory carbon-trading market. "I was eager to put it in place as soon as possible," said Margot Wallstrom, the European Union's environment commissioner then.

From the start, Ms. Wallstrom, now a vice president of the European Commission, said she was lobbied heavily by governments and by companies seeking to limit the financial burden.

The initial idea of charging for many of the permits never got off the ground. Many politicians feared that burdening European industries with extra costs would undercut their ability to compete in a global marketplace. In the end, the decision was made to hand out virtually all the permits free.

With European Union oversight, individual countries were charged with setting emissions levels and distributing the permits within their borders, often to companies with strong political connections.

Jurgen Trittin, a former Green Party leader who was the German minister of environment from 1998 to 2005, recalled being lobbied by executives from power companies, and by politicians from the former East Germany seeking special treatment for lignite, a highly polluting soft brown coal common around central Europe.

The framework of the European system put governments in the position of behaving like "a grandfather with a large family deciding what to give his favorite grandchildren for Christmas," Mr. Trittin said in an interview.

The debates on what limits to set for carbon dioxide emissions were particularly arduous. Mr. Trittin recalled a five-hour "showdown" in March 2004 with Wolfgang Clement, then the economy minister, in which he lost a battle to lower the overall limit. It was eventually set at 499 million tons a year, a reduction of only 2 million tons.

In a recent e-mail message, Mr. Clement did not challenge the details of his former colleague's account, but he characterized as "just nonsense" Mr. Trittin's claims of undue industry influence. He said the Greens were unrealistic about what could be achieved.

"I reproached them -- and I'm doing this still today -- that at the end of their policy there is the de-industrialization of Germany," Mr. Clement said. "That's our conflict."

Eberhard Meller, the president of the Federation of German Electricity Companies, which represents companies like RWE, said, "Good sense triumphed in the end." For his part, Mr. Clement eventually joined the supervisory board of RWE Power, in 2006.

The benefits won by German industry were substantial. Under the plan that the European Union originally approved for Germany, electricity companies were supposed to receive 3 percent fewer permits than they needed to cover their total emissions between 2005 and 2007, which would have forced them to cut emissions.

Instead, the companies got 3 percent more than needed, according to the German Emissions Trading Authority, the regulatory agency, a windfall worth about $374 billion at the peak of the market. German lawmakers also approved exemptions and bonuses that could be combined in dozens of ways and allowed companies to gain additional permits.

"It was lobbying by industry, including the electricity companies, that was to blame for all these exceptional rules," said Hans Jurgen Nantke, the director of the German trading authority, part of the Federal Environment Agency.

Higher Bills Draw Inquiry

After the system kicked off, in 2005, power consumers in Germany started to see their electrical bills increase by 5 percent a year. RWE, the power company, received 30 percent of all the permits given out, more than any other company in Germany.

The company said its price increases from 2005 to 2007 predominantly reflected higher costs of coal and natural gas. But the company acknowledged charging its customers for the emission permits, saying that while it may have received them free from the government, they still had value in the marketplace.

The German antitrust authority later investigated. In a confidential document sent to RWE lawyers in December 2006, that agency accused RWE of "abusive pricing," piling on costs for industrial clients that were "completely out of proportion" to the company's economic burden, according to the document, which was obtained by The New York Times.

Without admitting wrongdoing, RWE last year agreed to a settlement that should provide lower electricity rates to industrial customers in Germany from 2009 through 2012.

Meanwhile emissions have risen at RWE's German operations since the trading system began. The company emitted nearly 158 million tons of carbon dioxide in 2007, compared with 120 million tons in 2005, according to its annual reports.

The company said its emissions rose in part because one of its nuclear power stations, which emit no carbon dioxide, was off line for a while.

Jurgen Frech, the chief spokesman for RWE, said that charging customers for the carbon permits was "beyond reproach," and added that the company will spend more than $1 billion this year to comply with the emissions trading system. RWE also said it is investing $41 billion over the next five years in projects including renewable energy and developing cleaner ways to generate electricity from coal mined in Germany.

For all the problems with the European system, some experts say it is simply too early to judge whether it will succeed. As the region that went first with mandatory carbon trading, Europe was bound to make some initial mistakes, they said.

Call It Experimental

"People who don't want to do anything about carbon emissions in the United States are quick to say the European system was a failure," said Eileen Claussen, president of the Pew Center on Global Climate Change in Washington. "But they don't understand this was an experiment to learn how to get things right."

Supporters of carbon trading in Europe contend that significant reductions should be achieved starting this year because limits on emissions have been tightened. But negotiations on how to meet even more ambitious targets after 2012 are in danger of coming undone as the economy worsens.

Poland -- which depends on coal-fired plants for 95 percent of its electricity -- has threatened to block the next phase of Europe's emissions plan unless a way is found to lessen the burden on its energy sector. Its fears echo the position of some American states that depend on coal for their electricity; they worry about huge cost increases should Congress pass a global warming bill.

France's president, Nicolas Sarkozy, is leading the political horse- trading on Europe's new system after 2012.

"Europe," he said on Saturday in Poland, "must be an example for others."

Jad Mouawad reported from New York and Paul Geitner from Paris.

Copyright 2008 The New York Times

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

From: New York Times .....................................[This story printer-friendly]
November 26, 2008

NEW CASES OF CANCER DECLINE IN THE U.S.

[Rachel's introduction: On the other hand, "Some types of cancer are being found more often, the report said. Among men, incidence rates increased for cancers of the liver, kidney and esophagus, and for melanoma and myeloma. Among women, incidence rates increased for cancers of the lung, thyroid, pancreas, brain and nervous system, bladder and kidney, and for melanoma. Rates of leukemia and non- Hodgkin's lymphoma increased in both sexes."]

By Roni Caryn Rabin

The incidence of new cancer cases has been falling in recent years in the United States, the first time such an extended decline has been documented, researchers reported Tuesday.

Cancer diagnosis rates decreased by an average of 0.8 percent each year from 1999 to 2005, the last year for which data are available, according to an annual report by the National Cancer Institute, the American Cancer Society and other scientific organizations.

Death rates from cancer continued to decline as well, a trend that began some 15 years ago, the report also noted. It was published online in The Journal of the National Cancer Institute.

"Each year that you see these steady declines it gives you more confidence that we're moving in the right direction," said Dr. John E. Niederhuber, director of the National Cancer Institute, who is not an author of the report. "This is not just a blip on the screen."

Death rates from cancer fell an average of 1.8 percent each year from 2002 to 2005, according to the new report. Although last year's report said death rates dropped an average of 2.1 percent each year from 2002 to 2004, a modest 1 percent decline in 2005 lowered the average percentage for the period.

The decline is primarily due to a reduction in death rates from certain common cancers, including prostate cancer and lung cancer in men, breast cancer in women and colorectal cancer in both sexes.

The report attributes the reductions to adoption of healthier lifestyles and improved screening, as well as advances in treatment.

The drop in annual incidence rates is harder to interpret. The data may point to a real decline in the occurrence of some types of cancer, experts said. Alternatively, the decline may reflect inconsistent screening practices, causing some cancers that used to be detected to now go undiagnosed.

Breast cancer incidence rates decreased by 2.2 percent annually from 1999 to 2005, for example, a drop some researchers attributed to large numbers of women quitting hormone replacement therapy after a national study linked it to breast cancer in 2002.

Yet mammography rates have also fluctuated in recent years, meaning that some breast cancer cases may be going undetected, said Ahmedin Jemal, the strategic director for cancer surveillance at the American Cancer Society.

The incidence of prostate cancer declined by 4.4 percent a year from 2001 to 2005, after annual increases of 2.1 percent a year for several years, Dr. Jemal said. Yet prostate screening rates, too, have leveled off in recent years.

"This might not be good news," Dr. Jemal said. "It's always difficult to interpret the incidence rate."

Christine Eheman, chief of the cancer surveillance branch at the federal Centers for Disease Control and Prevention, was more optimistic about the decline in cancer diagnoses.

"I do think it's a good sign," Dr. Eheman said, "but I think we need to be very careful not to think we have this problem in any way beaten. We need to continue to do what we know works, and also find out why some cancers are not decreasing and not decreasing in certain populations."

Some types of cancer are being found more often, the report said. Among men, incidence rates increased for cancers of the liver, kidney and esophagus, and for melanoma and myeloma. Among women, incidence rates increased for cancers of the lung, thyroid, pancreas, brain and nervous system, bladder and kidney, and for melanoma. Rates of leukemia and non-Hodgkin's lymphoma increased in both sexes.

The incidence of lung cancer has been declining among men for many years but rising among women, though the increase is slowing, according to the report.

"Women, unfortunately, got hooked on the smoking habit in the '60s and '70s," Dr. Eheman said, "so there was a larger increase in smoking later on in time, and the prevention of smoking has been slower. The decrease in lung cancer that we hope will occur has not been happening yet."

The report found sharp regional differences in lung cancer rates that appeared to be associated with local legislation, like smoking bans, and social attitudes toward tobacco and smoking. Lung cancer is diagnosed least often in Utah and most often in Kentucky, the report said.

State tobacco control policies appear to have had an enormous impact, the researchers said. In California, the first state to establish a comprehensive statewide tobacco control program, lung cancer death rates among men dropped by 2.8 percent annually on average from 1996 to 2005, twice the decline observed in many Southern and Midwestern states. California was the only state where the incidence of lung cancer among women had decreased.

Lung cancer death rates among women increased in 13 states: Alabama, Arkansas, the Carolinas, Indiana, Iowa, Kansas, Kentucky, Louisiana, Michigan, Mississippi, South Dakota and Tennessee. Tobacco taxes are lower than average in many of these states, the report noted.

Copyright 2008 The New York Times Company

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

From: Radiation and Public Health Project ................[This story printer-friendly]
November 11, 2008

CHILD LEUKEMIA DEATH RATES RISING NEAR U.S. NUCLEAR PLANTS

[Rachel's introduction: A new study finds that the death rate from leukemia has risen during the past 2 decades among children living near nuclear power plants in the U.S. Similar findings have been reported previously from Europe.]

Leukemia death rates in U.S. children near nuclear reactors rose sharply (compared to the national trend) in the past two decades, according to a new study.

The greatest mortality increases occurred near the oldest nuclear plants, while declines were observed near plants that closed permanently in the 1980s and 1990s. The study was published in the most recent issue of the European Journal of Cancer Care.

The study updates an analysis conducted in the late 1980s by the National Cancer Institute (NCI). That analysis, mandated by Senator Edward M. Kennedy (D-MA), is the only attempt federal officials have made to examine cancer rates near U.S. nuclear plants.

U.S. Rep. Edward J. Markey (D-MA), a senior member of the House Energy and Commerce Committee, said, "Nothing is more important to American families than the health of their children. It is critical that we continue to improve our understanding of the causes of child leukemia and learn how this heartbreaking disease be prevented, therefore this study deserves critical consideration."

Actor and advocate Alec Baldwin said "exposure to ambient levels of radiation near nuclear reactors used by public utilities has long been suspected as a significant contributor to various cancers and other diseases." Baldwin, who has a long-standing interest in radiation health issues, adds "nuclear power is not the clean, efficient energy panacea to which we are presently being reintroduced. It is dirty, poses serious security threats to our country, and is ridiculously expensive. Nukes are still a military technology forced on the American public with a dressed up civilian application."

Study authors were epidemiologist Joseph Mangano MPH MBA, Director of the Radiation and Public Health Project, and toxicologist Janette Sherman MD of the Environmental Institute at Western Michigan University. They analyzed leukemia deaths in children age 0-19 in the 67 counties near 51 nuclear power plants that started operations during the period 1957-1981 (the same counties in the NCI study). About 25 million people live in these 67 counties, and the 51 plants represent nearly half of all U.S. nuclear reactors).

Using mortality statistics from the U.S. Centers for Disease Control and Prevention, Mangano and Sherman found that in 1985-2004, the change in local child leukemia mortality (vs. the U.S.) compared to the earliest years of reactor operations were:

** An increase of 13.9% near nuclear plants started 1957-1970 (oldest plants)

** An increase of 9.4% near nuclear plants started 1971-1981 (newer plants)

** A decrease of 5.5% near nuclear plants started 1957-1981 and later shut down

The 13.9% rise near the older plants suggests a potential effect of greater radioactive contamination near aging reactors, while the 5.5% decline near closed reactors suggests a link between less contamination and lower leukemia rates. The large number of child leukemia deaths in the study (1292) makes many of the results statistically significant.

The Mangano/Sherman report follows a 2007 meta-analysis also published in the European Journal of Cancer Care by researchers from the Medical University of South Carolina. That report reviewed 17 medical journal articles on child leukemia rates near reactors, and found that all 17 detected elevated rates. A January 2008 European Journal of Cancer article that found high rates of child leukemia near German reactors from 1980-2003 is believed to be the largest study on the topic (1592 leukemia cases).

The carcinogenic effects of radiation exposure are most severe among infants and children. Leukemia is the type of childhood cancer most closely associated with exposures to toxic agents such as radiation, and has been most frequently studied by scientists. In the U.S., during the period 1975-2005, leukemia incidence among children younger than 15 rose 54.6% (from 3.3 per 100,000 to 5.1 per 100,000), according to the National Cancer Institute,[1] suggesting that more detailed studies of causes are warranted.

==============

The Radiation and Public Health Project is a non profit group of health professionals and scientists based in New York that studies health risks from radioactive exposures to nuclear reactors and weapons tests. RPHP members have published 23 medical journal articles on the topic.

End Notes

[1] National Cancer Institute, Cancer Statistics Review 1975-2005, Table XXVIII-2.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

From: New York Times .....................................[This story printer-friendly]
December 10, 2008

DIABETES EPIDEMIC SIGNALS AN INCREASE IN BLINDNESS, TOO

[Rachel's introduction: A new report projects that the number of adults 40 and older with diabetic retinopathy -- the leading cause of blindness among working-age adults -- will reach 16 million in 2050, up from 5.5 million in 2005.]

By Roni Caryn Rabin

The number of Americans who could lose their vision to diabetes- related eye diseases is going to skyrocket over the next four decades, with elderly Hispanics and blacks hit hardest because of higher rates of Type 2 diabetes, according to a new study from the Centers for Disease Control and Prevention.

The report projects that the number of adults 40 and older with diabetic retinopathy -- the leading cause of blindness among working- age adults -- will reach 16 million in 2050, up from 5.5 million in 2005.

An advanced form of the disease will affect 3.4 million people in 2050, almost triple the 1.2 million affected in 2005. The report was published on Tuesday in The Archives of Opthalmology.

"These are alarming numbers," said Dr. Jinan B. Saaddine, an epidemiologist at the disease centers and an author of the study. "This calls for more awareness and more action, not just to do something about the condition before it develops but to do more to prevent diabetes to start with."

"All of this could be prevented by preventing diabetes in the first place," she added. "That's the big picture."

Diabetics are more susceptible to developing cataracts and glaucoma as well, and the study estimates that the number of diabetics with glaucoma will quadruple to 1.4 million, while the number with cataracts will more than triple to 10 million.

Older Hispanics and black Americans will be disproportionately affected, according to the report. Glaucoma cases will increase almost 12-fold among Hispanic diabetics 65 and older, and the number of cataract cases will increase more than 7-fold among black diabetics 75 and older.

People with diabetic retinopathy usually do not have symptoms until they actually start to lose vision. As a result, many skip the recommended annual eye exams.

And though treatments are available, they are most effective early in the course of the illness, said Dr. Lloyd Aiello, director of the Beetham Eye Institute at the Joslin Diabetes Center in Boston.

Dr. Aiello said the figures were sobering but not surprising.

"We're in the middle of a worldwide diabetes epidemic that is just taking off," he said. "The economic impact is huge, even if you just look at the cost to the federal government of disability and reduced productivity."

"Many of these," he added, "are working people."

Copyright 2008 The New York Times

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Rachel's Democracy & Health News highlights the connections between issues that are often considered separately or not at all.

The natural world is deteriorating and human health is declining because those who make the important decisions aren't the ones who bear the brunt. Our purpose is to connect the dots between human health, the destruction of nature, the decline of community, the rise of economic insecurity and inequalities, growing stress among workers and families, and the crippling legacies of patriarchy, intolerance, and racial injustice that allow us to be divided and therefore ruled by the few.

In a democracy, there are no more fundamental questions than, "Who gets to decide?" And, "How DO the few control the many, and what might be done about it?"

Rachel's Democracy and Health News is published as often as necessary to provide readers with up-to-date coverage of the subject.

Editors:
Peter Montague - peter@rachel.org
Tim Montague - tim@rachel.org

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

To start your own free Email subscription to Rachel's Democracy & Health News send a blank Email to: rachel-subscribe@pplist.net

In response, you will receive an Email asking you to confirm that you want to subscribe.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Environmental Research Foundation
P.O. Box 160, New Brunswick, N.J. 08903
dhn@rachel.org

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 

For more information on this topic or related issues you can search the thousands of archived articles on the OCA website using keywords: