Methane Releases in the Arctic Ocean and Tundra: How Dangerous Are They?

Methane is a powerful greenhouse gas, but it also has an awesome power to really get people worked up, compared to other equally frightening pieces of the climate story.

January 4, 2011 | Source: Real Climate | by David

For related articles and more information, please visit OCA’s Environment and Climate Resource Center page.
Methane is a powerful greenhouse gas, but it also has an awesome power to really get people worked up, compared to other equally frightening pieces of the climate story.

What methane are we talking about?

The largest methane pools that people are talking about are in sediments of the ocean, frozen into hydrate or clathrate deposits (Archer, 2007). The total amount of methane as ocean hydrates is poorly constrained but could rival the rest of the fossil fuels combined. Most of this is unattractive to extract for fuel, and mostly so deep in the sediment column that it would take thousands of years for anthropogenic warming to reach them. The Arctic is special in that the water column is colder than the global average, and so hydrate can be found as shallow as 200 meters water depth.

On land, there is lots of methane in the thawing Arctic, exploding lakes and what not. This methane is probably produced by decomposition of thawing organic matter. Methane could only freeze into hydrate at depths below a few hundred meters in the soil, and then only at “lithostatic pressure” rather than “hydrostatic”, meaning that the hydrate would have to be sealed from the atmosphere by some impermeable layer. The great gas reservoirs in Siberia are thought to be in part frozen, but evidence for hydrate within the permafrost soils is pretty thin (Dallimore and Collett,1995)