Nanoparticles In Athletic Apparel May Seep Into Sweat

Nanotechnology: Some clothing may expose people to significant amounts of silver nanoparticles while they exercise

July 11, 2013 | Source: Chemical & Engineering News | by Erika Gebel

For related articles and more information, please visit OCA’s Clothes For a Change page.

For some lines of clothing, nanoparticles are the new fashion accessory. Manufacturers add the materials to clothing to prevent stinky molds from growing on sweaty socks or to protect people from the sun’s ultraviolet light. However, some toxicologists worry that the intimate contact between the clothing and skin may expose people to nanoparticles. In a new study, researchers measured how much of the materials leach off clothing into simulated sweat. (Environ. Sci. Tech. 2013, DOI: 10.1021/es304329w). They found that some pieces of clothing released significant levels of silver nanoparticles.

Two common types of nanoparticles found in clothing are titanium dioxide and silver: They’re used to make UV-resistant and antimicrobial apparel, respectively. Little is known about what effects these materials have on human health. In fact, researchers in Germany are currently conducting a large toxicological study on these particles and other nanomaterials, says Natalie von Gotz of the Swiss Federal Institute of Technology (ETH), Zurich.

Besides learning about the materials’ toxicology, researchers also need to determine exposure levels under real-world conditions, von Gotz says. She and her colleagues noted that people often wear nanoparticle-treated clothing during sporting or outdoor activities. So to estimate exposure levels, the team simulated the wear-and-tear a piece of clothing would undergo if worn by an active person and measured how many nanoparticles sloughed off.

The researchers studied fabric samples from garments they determined had titanium dioxide nanoparticles, silver nanoparticles, or both. This apparel included socks, shirts, and trousers. They put the samples into plastic bottles containing acrylic balls and up to 180 mL of artificial sweat, a water solution containing salts and organic molecules similar to that of human perspiration. Then, they placed the bottles into a washing machine and allowed the bottle to bounce around for at least 30 minutes. After agitating the samples, the researchers measured the concentration of nanoparticles in the artificial sweat with inductively coupled plasma optical emission spectroscopy. They also measured the sizes of the particles using scanning transmission electron microscopy.

Using that data, the team next estimated how much of the particles would end up on a person’s skin after strenuous exercise, such as playing tennis. They considered only levels of titanium dioxide and silver particles smaller than 450 nm, because larger particles are less likely to be absorbed through the skin, von Gotz says. In making their exposure estimates, the researchers also took into account a person’s gender and body weight, along with the size of the garment.