Researchers Assess the Impacts of Living in a Chemical Soup

Inside Oregon State University's Sinnhuber Aquatic Research Laboratory are rooms lined with tanks filled with thousands of zebrafish-silver, striped, one-to-two-inch creatures often found in home aquariums. The lab is the domain of Robert Tanguay,...

September 9, 2013 | Source: Eco Watch | by Elizabeth Grossman

For related articles and more information, please visit OCA’s Environment and Climate Resource Center page, Health Issues page and our Food Safety Research Center page.

Inside Oregon State University’s Sinnhuber Aquatic Research Laboratory are rooms lined with tanks filled with thousands of zebrafish-silver, striped, one-to-two-inch creatures often found in home aquariums. The lab is the domain of Robert Tanguay, professor of molecular toxicology at Oregon State, whose zebrafish are helping to answer one of the most pressing questions in environmental health and toxicology: what are the health effects of chemical mixtures?   

Tanguay has pioneered the use of zebrafish in toxicology. His lab is on the leading edge of this research, designing new experimental techniques and equipment that are enabling scientists to assess the impacts of multiple chemical exposures. Using zebrafish, Tanguay and other scientists are zeroing in on why certain chemical components of crude oil spilled by the Exxon Valdez in 1989 continue to adversely affect fish survival in Alaska’s Prince William Sound. With zebrafish, they also are learning why pesticide runoff can impair Pacific Northwest salmon’s ability to navigate and how oil from the ruptured Deepwater Horizon well is affecting marine species’ health in the Gulf of Mexico.

But zebrafish research goes well beyond the impact of chemical exposures on marine life. Zebrafish studies are also being used to assess the potential human health impacts of the chemical stew in U.S. Superfund sites. Tanguay’s lab is conducting research for the U.S. Environmental Protection Agency (EPA), evaluating the toxicity of thousands of chemicals used in countless consumer products. Zebrafish are also proving key to advancing our understanding of how particular chemical compounds affect the expression of individual genes that maintain and influence virtually every body system.

“Some people are still skeptical about how a fish can model human health,” said Tanguay during a tour of his lab earlier this month. “But during early development we are more similar to fish than at any other time in life.” Genes are particularly susceptible to environmental chemicals in early development. What happens then can set the stage for health throughout the rest of life.