Ruin Is Forever: Why GMOs Should Be Banned on the Basis of the Precautionary Principle

If you are dead, you cannot mount a comeback. If all life on Earth were destroyed by, say, a large comet impact, there would be no revival. Ruin is forever.

August 31, 2014 | Source: Resource Insights | by Kurt Cobb

For related articles and more information, please visit OCA’s Genetic Engineering page and our Millions Against Monsanto page.

If you are dead, you cannot mount a comeback. If all life on Earth were destroyed by, say, a large comet impact, there would be no revival. Ruin is forever.

The destruction of all life on Earth is not 10 times worse than the destruction of one-tenth of all life on Earth. It is infinitely worse. A fall of 1 foot is not one-tenth as damaging to the human body as a fall of 10 feet, nor is it one-hundredth as damaging as a fall of 100 feet (which is very likely to be lethal). Walking down a stairway with one-foot-high steps, we are typically immune to any damage at all. Thus, we can say in both instances above that the harm rises dramatically (nonlinearly) as we move toward any 100 percent lethal limit.

It is just these properties – scope and severity – that most humans seem blind to when introducing innovations into society and the environment according to a recent paper entitled “The Precautionary Principle: Fragility and Black Swans from Policy Actions“. The paper comes from the Extreme Risk Initiative at the New York University School of Engineering and one of its authors, Nassim Nicholas Taleb, is well-known to my readers.

The concepts in the paper are applicable to systemic problems such as climate change. But the paper addresses only two specific issues, genetically modified organisms (GMOs) and nuclear power, to illustrate its main points.

The precautionary principle refers to a policy that demands proof that an innovation in not broadly harmful to humans or the environment before it is deployed. We are referring here to public policy issues, not decisions by individuals. The question the paper tries to answer is: When should this principle be invoked in public policy?

The answer the authors give is surprisingly simple: when the risk of ruin is systemic. That doesn’t mean that they suggest no steps to mitigate risk when ruin might only be local, say, the explosion of a fireworks factory. But, they feel that such an event falls within the realm of risk management. An explosion at one fireworks factory cannot set off a chain reaction around the world. Individuals in and around the plant might be ruined. But all of humanity would not ruined.

In the two examples covered in the paper, GMOs and nuclear power, the authors come to the surprising conclusion that nuclear power on a small scale does not warrant invoking the precautionary principle. Small-scale nuclear power does warrant careful risk management and cost/benefit analysis. Whether the damaged reactors at Fukushima would fall into the category of small-scale nuclear power isn’t clear. Their effects were worldwide, even if small in most places.