Agriculture beyond the Green Revolution: Shaping the Future We Want

We have a world with 842 malnourished and 1.5 billion obese people. It is clearly not sustainable and also exhausting the world's resources, using far too much energy and depleting the land of its natural fertility.

September 22, 2014 | Source: Institute of Science in Society | by Dr Eva Sirinathsinghji

For related articles and more information, please visit OCA’s Environment and Climate Resource Center page and our Organic Transitions page.

We have a world with 842 malnourished and 1.5 billion obese people. It is clearly not sustainable and also exhausting the world’s resources, using far too much energy and depleting the land of its natural fertility. A transition towards agro-ecological farming is possible. It will require philosophical, political, agricultural and policy innovations with minimal investments of 0.2 % of global GDP, so says Hans R Herren, President of the Millennium Institute, recipient of the 2013 Right Livelihood award, plus a string of past honours on innovations in food and agriculture. He was delivering the opening keynote at the
1st Forum of Development and Environmental Safety under the theme “Food Safety and Sustainable Agriculture 2014”, 25 – 26 July 2014, in Beijing. If we make this transition, then by 2050, the world will have enough healthy food without losing quality jobs, health or food sovereignty, or the health and resources of the planet.

A fundamental shift from brown to green agriculture

A fundamental shift from brown to green agriculture is necessary if we are to secure a sustainable future for generations to come. The industrial system that currently dominates the world is unsustainable, and is responsible for widespread health problems both of malnutrition and obesity. Not only is this system unable to successfully feed people, but is also unsustainable at the level of energy consumption. The industrial food system uses 10 calories to produce 1 calorie that is nutritionally empty [1].  This is in contrast to organic farming, which has been shown in numerous agricultural settings to use significantly less energy (see box 1). The high energy needs of industrial agriculture are a major contributor to climate change as well as soil degradation, water shortages and loss of biodiversity, which all exacerbate food insecurity. In addition, it aggravates social problems, with mechanised farming emptying rural areas of people who used to work as farmers, instead of providing quality jobs. As Dr Herren rightly said, business as usual is not an option, the current system in unsustainable, despite the distorted picture often presented by those with vested interests in the
status quo.

Agroecological farming more energy efficient than industrial agriculture

Industrial agriculture wastes energy at every level, from high chemical inputs to mechanisation, to packaging and long-distance transportation and storage of foods. Chemical inputs were estimated by the Soil Association to make up 37 % of the total energy used – mainly in the production of synthetic pesticides and mineral fertilisers. The research project by the British Ministry of Agriculture, Fisheries and Food concluded that organic farming requires an energy input per hectare that is 40 % of that required for conventional farming for wheat production, 54 % for potatoes and 50, 65 and 27 % for carrots, onions and broccoli respectively. Organic agriculture outperforms its conventional counterpart on energy efficiency (ratio of energy input per unit of crop) such that any increase in yield through chemical inputs is generally offset by the energy used to produce fertilisers. Another study found that covering vegetable, dairy and meat sectors, there is an overall reduction of 15 % energy. With livestock farming, conventional systems typically rely on off-farm supply of concentrated feed, while organic systems more often source their livestock forage locally or produce it themselves. Almost two thirds of energy consumption of conventional livestock farming has been attributed to the production, processing and transport of feed, with some of the most common feeds being derived from genetically modified soybean or corn grown in monocultures with huge chemical inputs.

Converting whole nations and regions to organic systems has the potential to drastically reduce energy consumption while at the same time providing chemical free environments for farmers and chemical free produce for consumers. A study from the University of Essex examined the environmental impact of wide-scale conversion to organic agriculture in Croatia, estimating a 38 % reduction in current base-line energy consumption. Converting to this system was also concluded to decrease costs associated with environmental degradation and encourage economic growth through training and dissemination of local organic farming techniques (see [2] for more detail on energy consumption of agricultural systems).

Consumption pattern needs to change

Consumption is one aspect of the food system that needs to change (see Figure 1). In the West too much meat is consumed and not enough vegetables; that is not only unhealthy but has a much higher environmental impact. Consumption patterns are also affected by food prices. While consumers in the West spend on average 7 % of their incomes on food, people in Asia and Africa have to spend as much as 60-70 %, no wonder there is simultaneously obesity and malnutrition worldwide.