If Grown Right, Wheat Might Help Fight Climate Change

Conventional farming usually gets a bad climate rap. That's because, in one way or another, food production accounts for up to a third of all anthropogenic greenhouse gas (GHG) emissions.

November 18, 2014 | Source: Civil Eats | by Julia Rosen

For related articles and more information, please visit OCA’s Environment and Climate Resource Center page and our Organic Transitions page.

Conventional farming usually gets a bad climate rap. That’s because, in one way or another, food production accounts for up to a third of all anthropogenic greenhouse gas (GHG) emissions.

Some seep directly from agricultural soils, but others stem from transportation, farm machinery, and the substantial carbon footprints of synthetic fertilizers and other inputs. These indirect emissions add to the environmental impacts of staple crops like corn and wheat, oft-vilified grains that feed much of the world’s population.

But a new paper, published today in the journal
Nature Communications, offers a slice of good news. The study found that a combination of a few basic farming practices boosted wheat production and put heaps of carbon back into the soil-more than enough to compensate for the GHGs emitted in the process of growing it.

“The conventional thinking is that wheat production emits carbon,” said Yantai Gan, a senior scientist at Canada’s Semiarid Prairie Agricultural Research Center and the lead author of the study.

But Gan’s research suggests that’s only half the story. Roots and stems left in the ground at the end of the growing season return carbon to the soil, offsetting emissions. That means reducing the climate impact of wheat hinges on maximizing soil carbon storage and minimizing inputs, all while growing as much grain as possible.

In the new study, the researchers identified a set of agricultural techniques that do just that. The results grew from a 25-year experiment conducted in Saskatchewan’s swaying fields of Spring wheat. There, researchers farmed dozens of test plots using four different cropping systems: a three-year rotation of fallow-wheat-wheat, another of fallow-flax-wheat, a two-year rotation of wheat and lentils, and continuous wheat plantings.

Along the way, scientists measured how much grain they grew, how much carbon built up in the soil, and how many GHGs were belched into the atmosphere at every stage of production.

What the researchers found surprised them: All of the plots had a negative carbon footprint.