Rice farm and worker

Goodbye to Golden Rice? GM Trait Leads to Drastic Yield Loss And ‘Metabolic Meltdown’

GMO Golden Rice is promoted as a potent tool to alleviate vitamin A deficiency. However, Indian researchers now report that the genes needed to produce it have unintended effects. When they introduced the engineered DNA, their high-yielding and agronomically superior Indian rice variety became pale and stunted, flowering was delayed and the roots grew abnormally. Yields were so reduced that it was unsuitable for cultivation.

October 25, 2017 | Source: Independent Science News | by Allison Wilson, PhD.

GMO Golden Rice is promoted as a potent tool to alleviate vitamin A deficiency. However, Indian researchers now report that the genes needed to produce it have unintended effects. When they introduced the engineered DNA, their high-yielding and agronomically superior Indian rice variety became pale and stunted, flowering was delayed and the roots grew abnormally. Yields were so reduced that it was unsuitable for cultivation (Bollinedi et al. 2017).

Rice is a good source of certain nutrients but it lacks Vitamin A. In low-income households in certain countries, a rice-based diet can therefore result in vitamin A and other nutrient deficiencies.

According to Syngenta and certain public sector biotechnologists, vitamin A nutrition can be improved by introducing transgenes that specify enzymes in the β-carotene biosynthesis pathway (Ye et al. 2000; Bollinedi et al. 2014). β-carotene is one of several carotenoid precursors to vitamin A.

A short history of Golden Rice

The first GMO Golden Rices had either two or three introduced genes (in addition to a transgene specifying antibiotic resistance as a selectable marker). Plants with two had a daffodil phytoene synthase (psy) transgene and a phytoene desaturase (ctrI) transgene from the bacterium Erwinia uredovora. These were transferred together as a gene cassette. Those with three had in addition a daffodil lycopene β–cyclase (lcy) transgene, co-transferred in a separate cassette (Ye et al. 2000). Each independently generated event consisted of one or more gene cassettes integrated at a particular location in the plant genome.

The public sector group who developed these subsequently created a new set of events using just the psy and ctrI transgenes. They also changed the vector, the selectable marker and used different rice varieties. These changes were intended to make Golden Rice “amenable to deregulation” (Hoa et al. 2003).

As critics pointed out, the rice from both sets of events had very low carotenoid levels, less than 1.6ug/g.