Close up photo of ground beef

Majority of Supermarket Meats Are Still Riddled With Superbugs

Tests conducted in 2017 on nearly 5,780 antibiotic-resistant bacterial samples collected from hospitals and nursing homes revealed 1 in 4 samples contained genes known to confer drug resistance, and 221 of them, collected from 27 states, contained a particularly rare drug-resistance gene that confers a very high level of resistance.

July 17, 2018 | Source: Mercola.com | by Dr. Joseph Mercola

For a number of years now, researchers have warned we are headed toward a post-antibiotic world — a world in which infections that used to be easily treatable become death sentences as they can no longer be touched by available drugs. As reported by NPR July 2, 2018:1

”A woman in Nevada dies from a bacterial infection that was resistant to 26 different antibiotics. A U.K. patient contracts a case of multidrug-resistant gonorrhea never seen before. A typhoid superbug kills hundreds in Pakistan. These stories from recent years — and many others — raise fears about the possibility of a post-antibiotic world.”

In the video above, NPR explains how antibiotic resistance develops, and what can be done to stem the swelling tide of drug-resistant infections. Importantly, misuse and overuse must be reined in. Despite strong warnings, about 80 percent of the antibiotics sold in the U.S. are still given to livestock — not to treat acute infections but as a preventive measure, and as a growth promoter. This routine low-dose administration is a most dangerous practice, as it primes bacteria for resistance.

As explained in the video, when antibiotics are given, any bacteria that survive are now stronger and can more readily evade the drug the next time around. This is also why, when you’re given a course of antibiotics for an infection, the instructions will tell you to take the full course and not stop early. It’s important to eradicate all the bacteria before stopping, or else you risk developing an even harder-to-treat infection as surviving bacteria will have developed hardier resistance.

Highly Resistant Bacteria Are on the Move

Tests conducted in 2017 on nearly 5,780 antibiotic-resistant bacterial samples collected from hospitals and nursing homes revealed 1 in 4 samples contained genes known to confer drug resistance, and 221 of them, collected from 27 states, contained a particularly rare drug-resistance gene that confers a very high level of resistance.2,3

This hardy resistance gene was found in a number of different types of infections, including pneumonia, bloodstream infections and urinary tract infections (UTIs). Disturbingly, follow-up screening showed nearly 1 in 10 asymptomatic contacts tested positive for drug-resistant bacteria carrying this rare gene, which means it can, and likely has, spread to other patients who have come into contact with an infected individual.

The emergence and rapid spread of this new drug resistance gene is deeply troubling, as it can cause untreatable infections where supportive care is the only option.4 With intravenous fluids, you may recover as long as your immune system is strong enough. If your immune function is weak, the infection could turn lethal. It’s hard to fathom a situation where people are routinely dying from UTIs and pneumonia — both of which have for decades been easily treatable with antibiotics — but that’s where we’re headed.

Drug-resistant sexually transmitted diseases (STDs) are also on the rise, making STD infection a very serious concern, especially as prevalence has also sharply increased in recent years. In California, STD prevalence has increased by 45 percent in the past five years alone.5,6,7

Gonorrhea, Syphilis and UTIs Becoming Increasingly Resistant to Treatment

There’s now evidence showing syphilis and gonorrhea are developing pan-resistance, meaning they’re impervious to several different antibiotics. Drug-resistant UTIs are also on the rise, and the spread of antibiotic-resistant UTIs has been directly linked to the consumption of chicken meat contaminated with drug-resistant bacteria.

• Syphilis has developed resistance against azithromycin, the second drug of choice for this infection,8and recent research9 shows both of the two main strains of syphilis have developed drug resistance. The Street Strain 14 (SS14), which is a newer strain, appears to be far more drug-resistant than the older Nichols strain.

A whopping 90 percent of the SS14 samples had drug resistance genes. The number of babies born infected with syphilis contracted from their mother has also quadrupled and, with it, stillbirths have spiked as well.10

• Gonorrhea is now resistant to all antibiotics that have been used against it — including penicillin, tetracycline and fluoroquinolone antibiotics — and is rapidly developing resistance against cephalosporins, the drug of last resort. Resistance to cefixime and ceftriaxone has already been reported in more than 50 countries.

As noted by Dr. Teodora Wi, medical officer of human reproduction at the World Health Organization (WHO),11 “The bacteria that cause gonorrhea are particularly smart. Every time we use a new class of antibiotics to treat the infection, the bacteria evolve to resist them.” In 2013, the U.S. Centers for Disease Control and Prevention (CDC) estimated about one-third of gonorrhea cases were resistant to at least one antibiotic. Between 2013 and 2014, cases of antibiotic-resistant gonorrhea suddenly doubled.12

• A form of E. coli known as extra-intestinal pathogenic E. coli or ExPEC is responsible for over 90 percent of UTIs,13 and DNA matching reveals many are caused by eating contaminated poultry.14,15,16,17 In other words, many UTIs are caused not through sexual contact with an infected partner but by zoonosis, meaning animal to human disease transfer.18,19,20 As early as 2005 papers were published showing drug-resistant E. coli strains from supermarket meat matched strains found in human E. coli infections.21

Of the 8 million UTIs occurring in the U.S. each year, an estimated 10 percent are resistant to antibiotics, making them life-threatening occurrences as the bacteria can travel from the bladder into your kidneys and onward into your bloodstream. Drug resistance has become common enough that doctors are now advised to test for drug resistance before prescribing an antibiotic for a UTI.