Person in a lab.

Why Scientists Tweak Lab Viruses To Make Them More Contagious

The microbiology toolbox includes techniques to induce mutations in viruses that give the microbes new powers. Scientists perform these manipulations for many reasons, including wanting to understand how the microbes evade detection by our immune systems. But adding capability to a pathogen carries obvious risks, especially if this “gain of function” involves enhanced virulence or infectiousness. Escape from a lab, by accident or design, is a possibility.

June 14, 2021 | Source: Scientific American | by Emily Willingham

Some “gain of function” studies explore how a dangerous pathogen might cross species barriers to start an outbreak. They are not without controversy

The microbiology toolbox includes techniques to induce mutations in viruses that give the microbes new powers. Scientists perform these manipulations for many reasons, including wanting to understand how the microbes evade detection by our immune systems. But adding capability to a pathogen carries obvious risks, especially if this “gain of function” involves enhanced virulence or infectiousness. Escape from a lab, by accident or design, is a possibility. So why do it? Some researchers argue the work can offer a peek at what a virus can do before it goes into the natural world and poses a threat to people.

Controversy over gain-of-function research has generated academic papers, conferences and even a moratorium in 2014, when the U.S. government paused funding for three years until steps could be taken to ensure the safety of the procedure. Debate about gain-of-function experiments continues in the latter phases of the pandemic as thoughts turn to the “next one” or a possible second act for COVID-19. Science policy makers must wrestle with defining the rare instances in which the benefits of experiments that enhance a virus’s capacity to survive and flourish in human hosts outweigh any risks.